

Customer: Minto
Date: July 12th, 2021

SMART CONTRACT CODE REVIEW
AND SECURITY ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Minto -
Second Review

Approved by Andrew Matiukhin | CTO Hacken OU

Type ERC20 Burnable Lockable, Staking
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Deployed
contracts

https://hecoinfo.com/address/0x410a56541bD912F9B60943fcB344f1E3D6F0
9567
https://hecoinfo.com/address/0x9Cad4215FD0fc460B042eC86AbDe0130aA77
069E

Timeline 28 JUNE 2021 – 12 JULY 2021
Changelog 30 JUNE 2021 – INITIAL AUDIT

12 JULY 2021 – SECOND REVIEW

https://hecoinfo.com/address/0x410a56541bD912F9B60943fcB344f1E3D6F09567
https://hecoinfo.com/address/0x410a56541bD912F9B60943fcB344f1E3D6F09567
https://hecoinfo.com/address/0x9Cad4215FD0fc460B042eC86AbDe0130aA77069E
https://hecoinfo.com/address/0x9Cad4215FD0fc460B042eC86AbDe0130aA77069E

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 8

Audit overview 9

Conclusion 11

Disclaimers 12

Introduction

Hacken OÜ (Consultant) was contracted by Minto (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of Customer's smart contract and its code review
conducted on July 12th, 2021.

Scope

The scope of the project is the next smart contracts:

Deployed contracts:
BTCMT -
https://hecoinfo.com/address/0x410a56541bD912F9B60943fcB344f1E3D6F09567#rea
dContract
Staking -
https://hecoinfo.com/address/0x9Cad4215FD0fc460B042eC86AbDe0130aA77069E#rea
dContract

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are Well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

Security engineers found 1 medium, 2 low and 2 informational issues during
the first review.

Security engineers found 1 informational issue during the second review.

Graph 1. The distribution of vulnerabilities after the first review.

Insecure Poor secured Secured Well-secured

You are here

Graph 2. The distribution of vulnerabilities after the second review.

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview

 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

1. Vulnerability: Some of tests provided fail

Some of tests which was written by developers and provided to audit
failing

Recommendation: Please check tests and fix the

Fixed before second review. Now all tests are passing

 Low

1. Vulnerability: Centralization / Privilege

Across contracts there are some roles with higher privileges like:
DEFAULT_ADMIN_ROLE, MINTER_ROLE for BTCMT token and Owner for
Staking. Each of those roles could modify critical configurations. If
an attacker could ever get control of any of those addresses, they
could perform actions which could cause users’ funds loss

Also, having such powerful addresses causes the centralization which
could have actions done without community decision.

Recommendation: renounce the ownership or transfer it to Timelock
with multisig governance contract. This will let users feel safe and
monitor any changes.

2. Vulnerability: No event on farm add/remove

It is the best practice to emit events on admin actions like adding
and removing farms. That will allow users to follow those events and
see when some are added or removed.

Recommendation: Please consider emitting events on adding / removing
farms

Fixed before second review

 Lowest / Code style / Best Practice

1. Vulnerability: Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Recommendation: Remove the equality to the boolean constant.

Fixed before second review

2. Vulnerability: Public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Recommendation: Please consider using the external attribute for
functions never called from the contract

Fixed before second review

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 1 medium, 2 low and 2 informational issues during
the first review.

Security engineers found 1 informational issue during the second review.

Category Check Items Comments

➔ Functional Review ➔ Centralization ➔ Centralization /
Privilege

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

